Movendo média em estatísticas


Digamos que você tem n pontos, 1,2,3,4,5. N Uma média simples é, math (Soma de todos os pontos) Number of pointsmath. Assim, no caso acima, a média será, mathMean (1 2 3. n) nmath A média móvel é uma série de média simples construída sobre um subconjunto criado a partir do conjunto original de pontos de dados. Em geral, as médias móveis, como tal, não são definidas, it039s geralmente um 039k ponto de média móvel039. Você basicamente toma primeiro k pontos do conjunto inicial em vez de todos os dados e calcular a média. Em seguida, mova o conjunto para a direita em uma etapa. Existem diferentes maneiras de experimentar os dados para a janela em movimento, mas esta é a mais popular. Assim, para uma média móvel de 3 pontos no exemplo acima, você escolheu primeiro (1,2,3) e obteve a média 2. Então mude a janela para a direita para que o próximo conjunto seja (2,3,4) e obtenha a média Média 3. Continue fazendo isso até chegar (n-2, n-1, n) e obter a média n-1. Isto dá-lhe uma série de n-2 números em vez de apenas 1 valor. Edit: Como assinalado nos comentários, corrigido. 243 Vistas middot Ver Upvotes middot Não é para reprodução middot Resposta solicitada por Nikhil Gupta Em que ponto a amostra significa igual a média verdadeira (estatísticas) O que significa este sinal de mais-menos estatística em termos layman039s Em estatísticas, o que significa quotregressing a Value to the meanquot Existem estatísticas sobre o número de viagens que não são comutadas pela pessoa média O que o termo quotcase fechado statisticallyquot significa Como é aplicado Um estudo de alunos tendo estatísticas 101 foi feito. Quatrocentos alunos que estudaram por mais de 10 horas fizeram uma média de B. Duzentos estudantes que estudaram por menos de 10 horas fizeram uma média de C. Esta diferença foi significativa no nível de 0,01. O que isso significa? Em estatísticas, o que significa substituição? Médias de movimento Médias de movimento Com conjuntos de dados convencionais, o valor médio é muitas vezes o primeiro, e um dos mais úteis, estatísticas de resumo para calcular. Quando os dados estão na forma de uma série temporal, a média da série é uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos em curto, anteriores ao período atual ou centrados no período atual, são freqüentemente mais úteis. Como esses valores médios variam ou se movem, à medida que o período atual se move a partir do tempo t 2, t 3, etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel exponencialmente ponderada é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela sua proximidade com o tempo atual. Como não existe uma, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisado como uma série e usado na modelagem e previsão. Uma gama de modelos pode ser construída usando médias móveis, e estes são conhecidos como modelos MA. Se tais modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média destes valores pode ser calculada. Se assumimos que n é bastante grande, e selecionamos um inteiro k que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (de ordem k): Cada medida representa a média dos valores de dados sobre um intervalo de k observações. Observe que o primeiro MA possível de ordem k gt0 é aquele para t k. De forma mais geral, podemos descartar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no instante t e os intervalos de tempo k-1 anteriores. Se forem aplicados pesos que diminuam a contribuição de observações que estão mais distantes no tempo, a média móvel é dita ser suavizada exponencialmente. As médias móveis são frequentemente utilizadas como uma forma de previsão, pelo que o valor estimado para uma série no tempo t 1, S t 1. É tomado como o MA para o período até e incluindo o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores anteriores registrados até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados sobre poluição atmosférica mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias, mostrada aqui em vermelho. Como pode ser visto, a linha de MA suaviza os picos e depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula de cálculo de referência padrão significa que os primeiros pontos de dados k-1 não têm valor de MA, mas depois os cálculos se estendem até o ponto de dados final da série. Uma razão para calcular médias móveis simples da maneira descrita é que ela permite que os valores sejam calculados para todos os intervalos de tempo desde o tempo tk até o presente, e Como uma nova medição é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem alguns problemas com esta abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, digamos, deve ser localizado no tempo t -1, não no tempo t. E para um MA sobre um número par de períodos, talvez ele deve ser localizado no ponto médio entre dois intervalos de tempo. Uma solução para esse problema é usar cálculos centralizados de MA, nos quais o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, esta abordagem não é geralmente usada porque exige que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Em casos onde a análise é inteiramente de uma série existente, o uso de Mas centralizado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, removendo alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) as tendências de forma semelhante à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar um cálculo da média móvel a uma série que já tenha sido suavizada, isto é, suavizar ou filtrar uma série já suavizada. Por exemplo, com uma média móvel de ordem 2, podemos considerá-la como sendo calculada usando pesos, então a MA em x 2 0,5 x 1 0,5 x 2. Da mesma forma, a MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 ou seja, a filtragem de 2 estádios Processo (ou convolução) produziu uma média móvel simétrica ponderada variável, com pesos. Várias circunvoluções podem produzir médias móveis ponderadas bastante complexas, algumas das quais foram encontradas de uso particular em campos especializados, como nos cálculos de seguros de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computadas com o comprimento da periodicidade como um conhecido. Por exemplo, com os dados mensais as variações sazonais podem frequentemente ser removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro eo último que são ponderados por 12. Isto é porque haverá Ser de 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis exponencialmente ponderadas (EWMA) Com a fórmula da média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos k pesos seria igual a 1 k. Então a soma dos pesos seria 1, ea fórmula seria: Já vimos que múltiplas aplicações desse processo resultam em pesos variando. Com médias móveis ponderadas exponencialmente, a contribuição para o valor médio a partir de observações que são mais removidas no tempo é deliberada reduzida, enfatizando os eventos mais recentes (locais). Essencialmente um parâmetro de suavização, 0lt alfa lt1, é introduzido, ea fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: Se os pesos no modelo simétrico são selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão a 1, e quando q se tornar grande, aproximar-se-á da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial agindo como a função do kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esta disposição, com q 1, produzindo os pesos. Em suavização exponencial é necessário usar um conjunto de pesos que somam 1 e que reduzem em tamanho geometricamente. Os pesos usados ​​são tipicamente da forma: Para mostrar que esses pesos somam 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1-x) p. Onde x (1-) e p -1, o que dá: Isso então fornece uma forma de média móvel ponderada da forma: Esta soma pode ser escrita como uma relação de recorrência: o que simplifica muito a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos a somar a 1 (para pequenos valores de alfa, isso normalmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escrevem: enquanto a literatura da teoria de controle usa freqüentemente Z em vez de S para os valores exponencialmente ponderados ou suavizados (ver, por exemplo, Lucas e Saccucci, 1990, LUC1 , Eo site do NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com alfa 1, a estimativa média é simplesmente o seu valor medido (ou o valor do item de dados anterior). Com 0,5 a estimativa é a média móvel simples das medições atuais e anteriores. Nos modelos de previsão, o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isto mostra que o valor da previsão no tempo t 1 é uma combinação da média móvel exponencialmente ponderada anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Supondo que uma série temporal é dada e uma previsão é necessária, um valor para alfa é necessário. Isto pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados obtidos com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa como o primeiro valor de dados observado, x 1. Em aplicações de controle, o valor de alfa é importante na medida em que é usado na determinação dos limites de controle superior e inferior, e afeta o comprimento médio de execução (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que as séries temporais representam um conjunto de variáveis ​​independentes, aleatoriamente distribuídas, com variância comum). Nestas circunstâncias, a variância da estatística de controlo é (Lucas e Saccucci, 1990): Os limites de controlo são usualmente definidos como múltiplos fixos desta variância assintótica, e. - 3 vezes o desvio padrão. Se alfa 0,25, por exemplo, e os dados sendo monitorados forem assumidos como tendo uma distribuição Normal, N (0,1), quando em controle, os limites de controle serão - 1,134 e o processo atingirá um ou outro limite em 500 passos na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob várias suposições usando procedimentos de Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARLs quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com um deslocamento 0,5 com alfa 0,25 o ARL é menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez à série temporal e, em seguida, análises ou processos de controlo são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, a suavização exponencial de dois ou três estágios pode ser aplicada como um meio de remover (explicitamente modelar) esses efeitos (veja a seção sobre Previsão abaixo eo exemplo trabalhado pelo NIST). CHA1 Chatfield C (1975) A Análise da Série de Tempos: Teoria e Prática. Chapman e Hall, Londres HUN1 Hunter J S (1986) A média móvel exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de controlo da média móvel ponderada exponencialmente: propriedades e melhoramentos. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de gráficos de controle baseados em médias móveis geométricas. Technometrics, 1, 239-250Moving Average: O que é e como calculá-lo Veja o vídeo ou leia o artigo abaixo: Uma média móvel é uma técnica para obter uma idéia geral das tendências em um conjunto de dados é uma média de qualquer Subconjunto de números. A média móvel é extremamente útil para prever as tendências a longo prazo. Você pode calculá-lo para qualquer período de tempo. Por exemplo, se você tiver dados de vendas para um período de vinte anos, você pode calcular uma média móvel de cinco anos, uma média móvel de quatro anos, uma média móvel de três anos e assim por diante. Os analistas do mercado de ações usarão frequentemente uma média movente de 50 ou 200 dias para ajudá-los a ver tendências no mercado conservado em estoque e (esperançosamente) prever onde os estoques estão indo. Uma média representa o valor 8220middling8221 de um conjunto de números. A média móvel é exatamente a mesma, mas a média é calculada várias vezes para vários subconjuntos de dados. Por exemplo, se você quiser uma média móvel de dois anos para um conjunto de dados de 2000, 2001, 2002 e 2003, você encontrará médias para os subconjuntos 20002001, 20012002 e 20022003. As médias móveis são normalmente plotadas e são visualizadas melhor. Calculando uma Média Móvel de 5 Anos Exemplo Exemplo Problema: Calcule uma média móvel de cinco anos a partir do seguinte conjunto de dados: (4M 6M 5M 8M 9M) ​​5 6.4M As vendas médias para o segundo subconjunto de cinco anos (2004 8211 2008). Centrada em torno de 2006, é de 6,6M: (6M 5M 8M 9M 5M) 5 6.6M As vendas médias para o terceiro subconjunto de cinco anos (2005 8211 2009). Centrado em torno de 2007, é 6.6M: (5M 8M 9M 5M 4M) 5 6.2M Continuar a calcular cada média de cinco anos, até chegar ao final do conjunto (2009-2017). Isso lhe dá uma série de pontos (médias) que você pode usar para traçar um gráfico de médias móveis. A seguinte tabela do Excel mostra as médias móveis calculadas para 2003-2017 juntamente com um gráfico de dispersão dos dados: Assista ao vídeo ou leia os passos abaixo: O Excel tem um poderoso add-in, o Data Analysis Toolpak (como carregar os dados Analysis Toolpak) que oferece muitas opções extras, incluindo uma função de média móvel automatizada. A função não só calcula a média móvel para você, mas também grava os dados originais ao mesmo tempo. Economizando um monte de batidas de tecla. Etapa 1: Clique na guia 8220Data8221 e, em seguida, clique em 8220Data Analysis.8221 Etapa 2: Clique em 8220Moving average8221 e, em seguida, clique em 8220OK.8221 Etapa 3: Clique na caixa 8220Input Range8221 e selecione os dados. Se você incluir cabeçalhos de colunas, verifique a caixa Rótulos na primeira linha. Passo 4: Digite um intervalo na caixa. Um intervalo é o número de pontos anteriores que você deseja que o Excel use para calcular a média móvel. Por exemplo, 822058221 utilizaria os 5 pontos de dados anteriores para calcular a média de cada ponto subsequente. Quanto menor o intervalo, mais próxima a sua média móvel é do seu conjunto de dados original. Etapa 5: Clique na caixa 8220Output Range8221 e selecione uma área na planilha onde deseja que o resultado apareça. Ou, clique no botão de opção 8220New worksheet8221. Etapa 6: Verifique a caixa 8220Chart Output8221 se você quiser ver um gráfico de seu conjunto de dados (se você esquecer de fazer isso, você sempre pode voltar e adicioná-lo ou escolher um gráfico a partir do 8220Insert8221 tab.8221 Passo 7: Pressione 8220OK .8221 O Excel retornará os resultados na área especificada na Etapa 6. Observe o vídeo ou leia as etapas abaixo: Exemplo de problema: Calcule a média móvel de três anos no Excel para os seguintes dados de vendas: 2003 (33M), 2004 (22M), 2005 (36M), 2006 (34M), 2007 (43M), 2008 (39M), 2009 (41M), 2018 (36M), 2017 (45M), 2017 (56M), 2017 (64M). 1: Digite seus dados em duas colunas no Excel. A primeira coluna deve ter o ano e a segunda coluna os dados quantitativos (neste exemplo problema, os números de vendas). Certifique-se de que não há linhas em branco em seus dados de célula. : Calcule a primeira média de três anos (2003-2005) para os dados. Para este problema de exemplo, digite 8220 (B2B3B4) 38221 na célula D 3. Calcular a primeira média Etapa 3: Arraste o quadrado no canto inferior direito d Para mover a fórmula para todas as células na coluna. Isso calcula médias para anos sucessivos (por exemplo, 2004-2006, 2005-2007). Arrastando a fórmula. Confira nosso canal do YouTube para obter mais dicas e dicas de estatísticas Média em Movimento: O que é e Como Calcular foi modificado pela última vez: 8 de janeiro de 2017 por Andale 22 pensamentos sobre ldquo Média Móvel: O que é e Como Calcular rdquo Isto é Perfeito e simples de assimilar. Obrigado pelo trabalho Isso é muito claro e informativo. Pergunta: Como se calcula uma média móvel de 4 anos Em que ano a média móvel de 4 anos se centralizaria Centraria no final do segundo ano (ou seja, 31 de dezembro). Posso usar a renda média para prever lucros futuros Muito claro e simples. Muito obrigado Como criar um método de média móvel Por favor me orientar. Você quer dizer um método de estoque de média móvel Onde eu vou centrar a minha primeira previsão para um período de 2 SMA Devo colocá-lo na segunda ou terceira linha eu colocá-lo na segunda linha. Eu gosto deste é útil Muito bom Exemplo O que acontecerá se o total de nenhum ano é mesmo Veja o meu comentário acima em 4 anos moving average8230it centraria no final de um ano. Alguém sabe sobre centrado significa por favor me diga se alguém sabe. Aqui it8217s dado que temos de considerar 5 anos para obter a média que está no center. Then que sobre os anos de descanso, se queremos obter a média de 20178230as que don8217t têm valores após 2017, então como é que vamos calculá-lo Como você Don8217t tem mais informações seria impossível calcular o MA de 5 anos para 2017. Você poderia obter uma média móvel de dois anos embora. Olá, Obrigado pelo vídeo. No entanto, uma coisa não é clara. Como fazer uma previsão para os próximos meses O vídeo mostra a previsão dos meses para os quais os dados já estão disponíveis. Oi, Raw, I8217m trabalhando em expandir o artigo para incluir previsão. O processo é um pouco mais complicado do que usar dados passados. Dê uma olhada neste artigo Duke University, que explica em profundidade. Atenciosamente, Stephanie obrigado por uma explanantion claro. Hi Não é possível localizar o link para o artigo sugerido Universidade Duke. Pedido para publicar o link againmoving average Média de dados de séries temporais (observações igualmente espaçadas no tempo) de vários períodos consecutivos. Chamado de movimento porque é continuamente recalculado à medida que novos dados se tornam disponíveis, ele progride caindo o valor mais antigo e adicionando o valor mais recente. Por exemplo, a média móvel das vendas de seis meses pode ser calculada tomando a média das vendas de janeiro a junho, depois a média das vendas de fevereiro a julho, depois de março a agosto, e assim por diante. As médias móveis (1) reduzem o efeito de variações temporárias nos dados, (2) melhoram o ajuste dos dados para uma linha (um processo chamado suavização) para mostrar a tendência dos dados mais claramente e (3) realçam qualquer valor acima ou abaixo do valor tendência. Se você está calculando algo com variação muito alta o melhor que você pode ser capaz de fazer é descobrir a média móvel. Eu queria saber qual era a média móvel dos dados, então eu teria uma melhor compreensão de como estávamos fazendo. Quando você está tentando descobrir alguns números que mudam frequentemente o melhor que você pode fazer é calcular a média móvel. Extrapolação de tendências

Comments