Metodo ponderada média móvel wma


Média em Movimento atau yang lebih dikenal dengan MA merupakan indikator yang paling sering digunakan dan paling standar. Meskipun sangat sederhana, tetapi Mudando média sendiri memiliki aplikasi yang sangat luas. Dikatakan sederhana karena pada dasarnya metode ini hanyalah pengembangan dari metodo rata-rata yang biasa kita kenal. Misalnya kita memiliki nilai 2,3,4,5,6 maka rata-rata dari nilai-nilai tersebut adalah (23456) 5 4. Sebagaimana namanya Mudança média indicador adalah yang menghitung rata-rata bergerak dados dari sebuah. Mengapa dikatakan menghitung rata-rata bergerak karena MA ini menghitung nilai dados dados de dados eang bergerak berubah. Jadi MA ini akan selalu menghitung setiap dados atau nilai yang baru terbentuk. Dalam kancah trading forex, secara umum Mudança média dikenal dengan tiga varian yang berbeda yaitu Simple Moving Average. Média móvel ponderada da média móvel exponencial. Masing-masing varian tersebut sesungguhnya adalah sama-sama menghitung rata-rata bergerak tetapi dengan metode yang berbeda dalam penghitunganya. A. Média de Movimento Simples (SMA) Média de Movimento Simples atau yang sering disingkat SMA adalah varian paling sederhana dari indicador Média de Movimento. Dikatakan paling sederhana karena SMA ini menggunakan metodo paling simples dalam menghitung rata-rata dados bergerak. Sebagai contoh: Jika kita mempunyai dados 2, 3, 4, 5, 6, 7, 9 dan 10. Dan kemudian kita akan mencari nilai rata-rata dados dados tersebut maka kita jumlahkan semua dados tersebut dan kemudian hasilnya kita bagi dengan banyaknya dados pembagi Agar lebih mudah mari kita terapkan penghitunganya. Dados: 2, 3, 4, 5, 6, 7, 9,10 Bilangan pembagi. 8 Dados de Rata-rata jumlah dibagi bilangan pembagi Maka nilai rata-ratanya adalah 448 5,5 2. Média de Movimento Exponencial (XMA) Média de Movimento Exponencial atau yang sering disingkat XMA merupakan penyempurnaan dari metode SMA. Dikatakan sebagai penyempurnaan karena XMA menghitung rata-rata bergerak dengan pembobotan yang berbeda pada masing-masing dados yang telah terbentuk pada blok dados. Pada XMA terjadi sebaliknya yaitu semakin panjangperiode yang kita pakai maka semakin kecil pembobotan nilai terakhir yang kita pakai. Secara matematis XMA kita tuliskan dalam bentuk sebagai berikut: Ok, mari kita lihat contoh perhitungannya. Dibawah ini adalah perhitungan XMA 6 periode: Beberapa dari Anda yang memperhatikan dados-dados yang membosankan ini pastilah bertanya-tanya dari mana nilai anterior XMA pada data nomor 6 karena bukankah kita belum sama sekali memiliki nilai XMA pada bagian sebelumnya Jawabannya, nilai anterior XMA tersebut Adalah nilai SMA. Jadi, nilai XMA untuk dados pertama adalah sama persis dengan nilai SMA. Dalam contoh diatas besarnya adalah 25,666667. Diperoleh dari (252428242627) 6 25,666667. Sama persis dengan cara menghitung SMA bukan (ayo lihat kembali pada bab sebelumnya). XMA pada nomor 6 diperoleh dari rumus diatas yaitu. Perhitungan terus dilakukan seperti cara diatas untuk memperoleh nilai XMA berikutnya. Tapi sudahlah, Anda tidak perlu melakukan perhitungan seperti saya karena semuanya sudah tersedia secara otomatis pada masa sekarang. Namun jika Anda tertarik untuk melakukan cheque cruzado dengan apa yang saya berikan, silakan saja. Tidak ada yang menghalangi Anda. 3. Média móvel ponderada (WMA) Média móvel ponderada atau yang lebih dikenal dengan WMA adalah salah satu varian MA yang menghitung rata-rata dados bergerak dengan pembobotan pada beberapa dados terakhir yang terbentuk. Pada SMA, dados de repetição de bobot yang telah terbentuk pada beberapa periode sebelumnya atau yang baru saja terbentuk memiliki bobot penilaian yang sama. Sementara pada WMA pada masing-masing dados yang telah terbentuk memiliki pembobotan yang berbeda. Data yang baru saja terbentuk pada blok dados memiliki pembobotan yang lebih ketimbang dados yang telah terbentuk pada blok dados sebelumnya. Pembobotan nilai pada WMA akan tergantung pada panjang periode yang kita tetapkan. Semakin panjang periode yang ditetapkan, maka semakin besar pula pembobotan yang diberikan pada data terbaru. Perhatikan tabel sederhana dibawah: Dalam Chart forex, penggunaan MA ini adalah untuk menghitung rata-rata bergerak dari blok dados atau yang lebih dikenal dengan istilah vela. Aplikasi MA memiliki beberapa metode dengan penghitungan yang berbeda: aberto. Menghitung rata-rata nilai abrir dados blok dados Jika kita menerapkan MA dengan aplicar Abrir maka MA ini hanya menghitung rata-rata dari setiap nilai abrir yang terbentuk dari masing-masing blok dados pada gráfico Fechar. Menghitung rata-rata nilai perto dari blok dados Jika kita menerapkan MA dengan aplicar Close maka MA ini hanya menghitung rata-rata dari setiap nilai Fechar yang terbentuk dari masing-masing blok dados pada gráfico Alto. Menghitung rata-rata nilai High dari blok dados Jika kita menerapkan MA dengan aplicar Alto maka MA ini hanya menghitung rata-rata dari setiap nilai Alto yang terbentuk dari masing-masing blok dados pada gráfico Baixo. Menghitung rata-rata nilai Dados de dados baixos de dados Jika kita menerapkan MA dengan aplicar Baixa maka MA ini hanya menghitung rata-rata dari setiap nilai Baixa yang terbentuk dari masing-masing blok dados pada chart Median Price (HL2): menghitung rata-rata nilai median Dari blok dados Jika kita menerapkan MA dengan aplicar Tengah maka MA ini hanya menghitung rata-rata dari setiap nilai Tengah yaitu (nilai HighLow) 3 yang terbentuk dari masing-masing blok dados pada gráfico Preço típico (HLC3): menghitung rata-rata nilai karakter Dari blok dados Jika kita menerapkan MA dengan aplicar Preço típico maka MA ini hanya menghitung rata-rata dari setiap nilai Preço típico yaitu (nilai HighLowClose) 3 yang terbentuk dari masing-masing blok dados pada gráfico Weighted Close (HLCC4): menghitung rata-rata Nilai karakter dari blok dados Jika kita menerapkan MA dengan aplicar Weighted Close maka MA ini hanya menghitung rata-rata dari setiap nilai Weighted Close yaitu (nilai HighLowCloseClose) 4 yang terbentuk dari masing-masin g blok gráfico pada dados Obrigado por ler Média Móvel nas Otopips Se aceitos, por favor compartilhá-lo via FB, Twitter e escrever os seus comentários a esta articleOANDA 1080108910871086108311001079109110771090 10921072108110831099 biscoito, 10951090108610731099 1089107610771083107210901100 1085107210961080 10891072108110901099 10871088108610891090109910841080 1074 1080108910871086108311001079108610741072108510801080 1080 108510721089109010881086108010901100 10801093 10891086107510831072108910851086 108710861090108810771073108510861089109011031084 10851072109610801093 10871086108910771090108010901077108310771081. 10601072108110831099 bolinho 10851077 10841086107510911090 1073109910901100 108010891087108610831100107910861074107210851099 107610831103 109110891090107210851086107410831077108510801103 10741072109610771081 10831080109510851086108910901080. 1055108610891077109710721103 108510721096 1089107210811090, 10741099 108910861075108310721096107210771090107710891100 1089 1080108910871086108311 0010791086107410721085108010771084 OANDA8217 109210721081108310861074 biscoito 1074 108910861086109010741077109010891090107410801080 1089 10851072109610771081 105510861083108010901080108210861081 108210861085109210801076107710851094108010721083110010851086108910901080. 1048108510891090108810911082109410801080 10871086 107310831086108210801088108610741072108510801102 1080 10911076107210831077108510801102 109210721081108310861074 biscoito, 1072 10901072108210781077 1091108710881072107410831077108510801102 108010841080 108710881080107410771076107710851099 10851072 10891072108110901077 aboutcookies. org. 1042 108910831091109510721077 10861075108810721085108010951077108510801103 1080108910871086108311001079108610741072108510801103 109210721081108310861074 bolinho 108610871088107710761077108310771085108510991077 1092109110851082109410801080 108510721096107710751086 10891072108110901072 10731091107610911090 1085107710761086108910901091108710851099. 104710721075108810911079108010901100 108410861073108010831100108510991077 1087108810801083108610781077108510801103 1042109310861076 1042109910731088107210901100 1089109510771090: 1042107910741077109610771085108510861077 1089108210861083110010791103109710771077 1089108810771076108510771077 (WMA) 10541087108010891072108510801077 WMA 10861079108510721095107210771090 1711074107910741077109610771085108510861077 1089108210861083110010791103109710771077 1089108810771076108510771077187 (1072108510751083. 171weighted average187 em movimento). 10551086108410861075107210771090 10891075108310721076108010901100 108210881080107410911102 1094107710851099, 10951090108610731099 10831091109510961077 1080107610771085109010801092108010941080108810861074107210901100 10901088107710851076. WMA 107610771083107210771090 107710971077 1073108610831100109610801081 1091108710861088 10851072 1085107710761072107410851086 1087108610831091109510771085108510991077 107610721085108510991077, 109510771084 EMA. 1060108610881084109110831072 1042107910741077109610771085108510861077 1089108210861083110010791103109710771077 1089108810771076108510771077 10741099109510801089108311031077109010891103 10871091109010771084 109110841085108610781077108510801103 1082107210781076108610751086 10791085107210951077108510801103 1074 108710861089108310771076108610741072109010771083110010851086108910901080 10851072 108810721079108510991081 10821086110110921092108010941080107710851090 1080 10891083108610781077108510801103 1087108610831091109510771085108510991093 10881077107910911083110010901072109010861074. 1042 10891074110310791080 10891086 1089108310861078108510861089109011001102 1074109910951080108910831077108510801103 1076107210851085108610751086 10891082108610831100107911031097107710751086 10891088107710761085107710751086 1085108010781077 10871088108010741077107610771085 108710881080108410771088. 10551088107710761087108610831086107810801084, 109510901086 1094107710851099 10791072108210881099109010801103 1079 1072 108710861089108310771076108510801077 5 1076108510771081 108910831077107610911102109710801077: 1044107710851100 1060108610881084109110831072 108210861101109210921080109410801077108510901072, 108710881080108410771085110310771084108610751086 1082 108210721078107610861081 10801079 109410771085, 108910831077107610911102109710721103: lt n. 1095108010891083108010901077108310771084 1074 108210721078107610861084 108910831091109510721077 11031074108311031077109010891103 10951080108910831086, 108610731086107910851072109510721102109710771077 10851086108410771088 107610851103 1074 108710861089108310771076108610741072109010771083110010851086108910901080. lt d. 107910851072108410771085107210901077108310771084 11031074108311031077109010891103 10891091108410841072 1082108610831080109510771089109010741072 1076108510771081 1074 1074108010761077 109010881077109110751086108311001085108610751086 10951080108910831072. 105810721082 108210721082 10861073109710771077 1082108610831080109510771089109010741086 1076108510771081 10881072107410851086 5, 109010881077109110751086108311001085109910841080 1095108010891083107210841080 11031074108311031102109010891103 5, 4, 3, 2 1080 1, 1072 10801093 10891091108410841072 10881072107410851072 5432115. 1055108611011090108610841091 5-1076108510771074108510861077 WMA 10881072108910891095108010901099107410721077109010891103 108210721082 83 (515) 81 ( 415) 79 (315) 79 (215) 77 (115) 80,7 1044107710851100 1042 107610721085108510861081 10871088107710791077108510901072109410801080 108710881077107610861089109010721074108311031077109010891103 109010861083110010821086 10861073109710721103 108010851092108610881084107210941080110 3. 1055108810801084107710881099 1087108810801074108610761103109010891103 1080108910821083110210951080109010771083110010851086 1074 10801083108311021089109010881072109010801074108510991093 10941077108311031093 1080 10841086107510911090 10851077 10861090108810721078107210901100 1090107710821091109710801077 1094107710851099 OANDA. 105410851080 10851077 11031074108311031102109010891103 10801085107410771089109010801094108010861085108510861081 1088107710821086108410771085107610721094108010771081 108010831080 10871086107310911078107610771085108010771084 1082 1089108610741077108810961077108510801102 108910761077108310821080. 1056107710791091108311001090107210901099, 10761086108910901080107510851091109010991077 1074 1087108810861096108310861084, 1085107710861073110310791072109010771083110010851086 109110821072107910991074107211021090 10851072 1088107710791091108311001090107210901099 1074 1073109110761091109710771084. 169 199682112017 OANDA Corporation. 104210891077 10871088107210741072 10791072109710801097107710851099. 10581086107410721088108510991077 10791085107210821080 OANDA, fxTrade 1080 108910771084107710811089109010741086 10901086107410721088108510991093 107910851072108210861074 fx 10871088108010851072107610831077107810721090 OANDA Corporation. 104210891077 108710881086109510801077 10901086107410721088108510991077 10791085107210821080, 10871088107710761089109010721074108310771085108510991077 10851072 1101109010861084 10891072108110901077, 11031074108311031102109010891103 10891086107310891090107410771085108510861089109011001102 108910861086109010741077109010891090107410911102109710801093 1074108310721076107710831100109410771074. 10581086108810751086107410831103 10821086108510901088107210821090107210841080 10851072 10801085108610891090108810721085108510911102 107410721083110210901091 108010831080 10801085109910841080 107410851077107310801088107810771074109910841080 1087108810861076109110821090107210841080 1089 10801089108710861083110010791086107410721085108010771084 10841072108810781080 1080 1082108810771076108010901085108610751086 10871083107710951072 107410831077109510771090 1074109910891086108210801077 10881080108910821080 1080 10871086107610931086107610801090 10851077 1074108910771084 108010851074107710891090108610881072108 4. 10561077108210861084107710851076109110771084 107410721084 109010971072109010771083110010851086 1086109410771085108010901100, 10871086107610931086107611031090 10831080 107410721084 10901072108210801077 10901086108810751086107410991077 10861087107710881072109410801080 1089 109110951077109010861084 10741072109610801093 108310801095108510991093 1086107310891090108611031090107710831100108910901074. 1042107210961080 109110731099109010821080 10841086107510911090 108710881077107410991089108010901100 10861073109810771084 10741072109610801093 1080108510741077108910901080109410801081. 1048108510921086108810841072109410801103, 10871088108010741077107610771085108510721103 10851072 107610721085108510861084 10891072108110901077, 10851086108910801090 10861073109710801081 10931072108810721082109010771088. 10561077108210861084107710851076109110771084 107410721084 10761086 108510721095107210831072 10901086108810751086107410831080 1086107310881072109010801090110010891103 10791072 1087108610841086109711 001102 1082 10851077107910721074108010891080108410991084 1082108610851089109110831100109010721085109010721084 1080 109110731077107610801090110010891103, 109510901086 10741099 108710861083108510861089109011001102 108710861085108010841072107710901077 107410891077 1089108610871091109010891090107410911102109710801077 10881080108910821080. 10581086108810751086107410831103 10871086108910881077107610891090107410861084 108610851083107210811085-108710831072109010921086108810841099 107410831077109510771090 10761086108710861083108510801090107710831100108510991077 10881080108910821080. 10571084. 108810721079107610771083 17110551088107210741086107410991077 1074108610871088108610891099187 10791076107710891100. 1060108010851072108510891086107410991081 10891087108810771076-1073107710901090108010851075 10761086108910901091108710771085 109010861083110010821086 10821083108010771085109010721084 OANDA Europe Ltd, 1103107410831103110210971080108410891103 10881077107910801076107710851090107210841080 105710861077107610801085107710851085108610751086 10501086108810861083107710741089109010741072 108010831080 1056107710891087109110731083108010821080 10481088108310721085107610801103. 105010861085109010881072108210901099 10851072 1088107210791085108010941091, 1092109110851082109410801080 109310771076107810801088108610741072108510801103 105210584 1080 108210881077107610801090108510861077 10871083107710951086 10891074109910961077 50: 1 1085107710761086108910901091108710851099 107610831103 1088107710791080107610771085109010861074 10571086107710761080108510771085108510991093 106410901072109010861074 1040108410771088108010821080. 1048108510921086108810841072109410801103 10851072 1101109010861084 10891072108110901 077 10851077 1087108810771076108510721079108510721095107710851072 107610831103 1078108010901077108310771081 10891090108810721085, 1074 1082108610901086108810991093 10771077 108810721089108710881086108910901088107210851077108510801077 108010831080 1080108910871086108311001079108610741072108510801077 10831102107310991084 10831080109410861084 108710881086109010801074108610881077109510801090 1084107710891090108510991084 1079107210821086108510721084 1080 10871088107210741080108310721084. 10501086108410871072108510801103 1089 108610751088107210851080109510771085108510861081 1086109010741077109010891090107410771085108510861089109011001102 OANDA Europe Limited 1079107210881077107510801089109010881080108810861074107210851072 1074 104010851075108310801080, 108810771075108010891090108810721094108010861085108510991081 10851086108410771088 7.110.087, 11021088108010761080109510771089108210801081 10721076108810771089: Torre 42, Piso 9a, 25 Old Broad St, London EC2N 1HQ. 104410771103109010771083110010851086108910901100 10821086108410871072108510801080 1083108010941077108510791080108810861074107210851072 1080 108810771075109110831080108810911077109010891103 10591087108810721074108310771085108010771084 10921080108510721085108910861074108610751086 1085107210761079108610881072. 10831080109410771085107910801103 8470 542574. OANDA Japan Co. Ltd. 8212 108710771088107410991081 10761080108810771082109010861088 10871086 108610871077108810721094108011031084 1089 10921080108510721085108910861074109910841080 1080108510891090108810911084107710851090107210841080 1090108010871072 Kanto local Bureau Financeiro (Kin-sho), 108810771075. 8470 2137 1095108310771085 1040108910891086109410801072109410801080 1092108010851072108510891086107410991093 109211001102109510771088108910861074, 108810771075. 8470 1571.Pertanyaan pertama yang timbul di benak kita adalah apakah perbedaan SMA dengan WMA Tentu saja ada perbedaannya. Cukup berbeda sehingga diklasifikasikan menjadi dua bagian. Tidak cukup banyak berbeda sehingga nama mereka mirip karena menggunakan metodologi yang sama, hanya caranya yang berbeda. Bayangkan begini: Manakah harga yang memiliki bobot penekanan yang lebih besar dalam memprediksi harga didepan, harga satu jam terakhir yang kita miliki atau hulha duan bulan lalu yang kita miliki Tentu saja yang satu jam terakhir. Paling tidak pergerakan harga tidak satu jam terakhir akan lebih representativo dalam memprediksi harga didepan apabila dibandingkan dengan harga dua bulan yang lalu. Atau jika kita aplikasikan dengan kehidupan sehari-hari, ambilah kita akan membeli sebuah telepon genggam. Tentu saja kita akan mencari tahu harga telepon genggam tersebut dalam rentang waktu terakhir. Nah, mungkin kita akan lebih memperhatikan harga satu hari yang lalu dibandingkan harga dua minggu yang lalu karena menurut hemat kita pastilah pergerakan harga tidak akan berbeda jauh dengan harga satu hari lalu. Bobot penilaian inilah yang diatur por WMA. Pada SMA, bobot setiap harga baik dua minggu lalu atau pun dua hari yang lalu memiliki bobot penilaian yang sama. Pada WMA dados terakhir memiliki bobot yang lebih besar nilainya dibandingkan harga-harga sebelumnya. Pembobotan nilai pada WMA akan tergantung pada panjang periode yang kita tetapkan. Semakin panjang periode yang ditetapkan, maka semakin besar pula pembobotan yang diberikan pada data terbaru. Perhatikan tabel sederhana dibawah: Nah, tidak sulit bukan. Ini hanyalah untuk menjawab pertanyaan Anda dari mana sebenarnya perhitungan WMA itu diperoleh. Pada kenyataannya kita tidak perlu lagi melakukan perhitungan manual seperti ini dan mengeplotnya satu per satu pada kertas bergaris. Software de uso doméstico e software. O software de leitura e armazenamento de dados é usado para melhorar a qualidade do produto....................................................................... Aplikasi WMA Secara keseluruhan, peraturan pada WMA adalah sama seperti pada SMA karena memang cara perhitungannya sama hanya memiliki perbedaan pada pembobotan nilai saja. Berikut ringkasannya: WMA berada dibawah harga. Kondisi, tendência de alta naik. WMA berada diatas harga. Kondisi tendência descendente menurun. WMA memotong harga dari bawah. Perubahan trend menuu bearish. WMA memotong harga dari atas. Perubahan trend menuju bullish. WMA periode lebih pendek memotong WMA periode lebih panjang dari bawah. Menor menu da moda de Perubahan em baixa. WMA periode lebih pendek memotong WMA periode lebih panjang dari atas. Perubahan trend menuju bullish. WMA dengan periode lebih panjang berada diatas WMA berperiode lebih pendek. Kondisi tendência de baixa tendência. WMA dengan periode lebih panjang berada dibawah WMA berperiode lebih pendek. Kondisi, tendência de alta naik. Nah, gambar dibawah ini adalah aplikasi dalam memprediksi tendência yang akan terjadi dengan menggunakan WMA. Cara penggunaannya sama persis dengan penggunaan pada WMA. Grafik GBPUSD, diariamente. Diambil 1 de julho de 2005. Sumber. Netdania Dan dibawah ini pemakaian WMA dengan dua periode yang berlainan: Grafik GBPUSD, Daily. Diambil 1 de julho de 2005. Sumber. Netdania Terlihat WMA lebih responsif dalam memprediksi perubahan tendência pada USDGBP. Setiap titik peralihan tendência tepat berada pada candelabro terakhir trend yang sedang berlangsung. Perhatikan juga pada gambar di atas akan terjadi kembali perubahan trend dari bullish menuju bearish. Dalam hal ini pemilihan periode yang tepat juga berpengaruh pada presisi penentuan trend. Apakah metode pembobotan pada WMA merupakan metode pembobotan yang paling cepat dalam memberikan perubahan tendência Tidak. Pada WMA pembobotan dilakukan tidak menyertakan nilai WMA sebelumnya. Pada bagian setelah ini kita akan melihat metode rata-rata bergerak yang melibatkan fungsi eksponensial dalam melakukan pembobotannya. Hasilnya adalah pemberian sinyal peralihan yang dapat lebih dini. Média de Movimento Exponencial (EMA). Ntu dibawah masih anyar artikelnya:

Comments